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Abstract 

The dynamical theory of diffraction usually employs 
some approximations that, however, cease to be valid 
in some cases, e.g. if the Bragg angle is near rr/2, at 
grazing incidence or at skew reflection. Some difficul- 
ties of the conventional dynamical theory of diffrac- 
tion are analysed using the concept of Ewald's 
dynamical theory of diffraction. 

I. Introduction 

In the so-called 'conventional'  dynamical theory of 
diffraction some approximations are used which 
mean that the final formulae are not valid in some 
extreme cases. This unfavourable situation occurs, 
for example, when the Bragg angle is near 7r/2, at 
grazing incidence, or at skew reflection. The usual 
'extended' dynamical theory of diffraction tries to 
remove these difficulties by making the yon Laue 
conventional theory more precise (Afanas'ev & 
Melkonyan, 1983, 1989; Baryshevsky, 1976; Brfimmer, 
H6che & Nieber, 1979; H~irtwig, 1976, 1977; Kishino 
& Kohra, 1971; Rustichelli, 1975). The aim of our 
paper is to discuss the above problems in the frame 
of Ewald's conception of the dynamical theory of 
diffraction (Ewald, 1916, 1917). 

2. The exact dynamical theory of diffraction 
in Ewald's picture 

Let us recall briefly the main results of our former 
paper (Litzman, 1986)* on the dynamical theory of 
diffraction of particles on a periodic system of point 
scatterers (Fermi ~ potentials). We shall deal with 
the diffraction on a simple lattice forming a semi- 
infinite crystal 

Rm = mlal + m2a2 + m3a3 , m = ( ml , m2, m3), (1) 

ml, m 2 = 0  , +1, + 2 , . . . ,  + ~ ,  m 3 = 0 ,  1 , 2 , . . .  ,0 G and 

* The formulae  o f  this paper  will be referred to as I, fol lowed 
by the relevant equat ion number.  
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a3z > 0. The origin of the orthogonal coordinate sys- 
tem lies at the lattice point (0, 0, 0), the plane Oxy 
coincides with the crystal-surface plane (al, a2). The 
axis Oz (the unit vector e3) and the vector al x a2 
point into the crystal. The lattice (gl,g2,g3) is 
reciprocal to the three-dimensional lattice (al, a2, a3), 
i.e. g,aj=27r6u, i, j = l ,  2, 3, g3lle3, Ig31a3~=27r, 
whereas the lattice (bl, bE) is reciprocal to the two- 
dimensional lattice (al, a2), i.e. biaj = 2rr6 U, b~-l_e3, i, 
j = 1, 2. Further, c II and c ± denote the components of 
the vector c = c II + c ± parallel and perpendicular to the 
crystal surface, respectively. Then bl =g~, b2=g~, 
g~=0.  

Let k be the wavevector of the incident wave, kz > O. 
We assign to this vector k and to each i(p, q), where± 
p, q are integers, three other vectors k~q and Km(k ) 
as follows: 

klplq = k fl +pbi  + qb2, (2a) 

Kp~(k) = k~q + e3Kpqz(k), (2b) 

where 

Kpqz(k) = + [ k 2 -  (k~q)2] 1/2 (2c) 

This means that 

K,~(k) = k. (2d) 

For (p, q) = (0, 0), K~-o(k)=k and also Kooz(k)=kz 
+ 

hold. Further, we define 0pq as 

+ - -  + ± o111,1[ + a3zKpqz(k)" (2e) Opq= 0pq(k) : a3Kpq(k) = ,~3Apq 

Now let us write down equations for the diffraction 
of scalar waves on Fermi 3 potentials. Vector waves 
(electromagnetic waves) can be handled in a similar 
way. The wave function gr(r) describing the diffrac- 
tion of particles on a simple perfect lattice formed 
by Fermi 3 potentials is [(I.9)] 

~ ( r ) = f  e x p ( i k r ) - Y "  Q e x p ( i k r - R " [ )  , 
. r - R .  (R.), 

(3) 
which is the superposition of the incident plane wave 
f exp (ikr) and of the spherical waves excited by the 
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point scatterers forming the crystal [the second term 
on the RHS of (3)]. The diffraction amplitude of the 
nth atom is Qq~" (R,), where Q is the diffraction length 
of the scatterers (atoms), and the effective field 
q~" (R,) incident on the nth atom must satisfy equation 
(I.8), 

q~"(R,,) = f  exp ( ikR.)  

_ ~--,, Q e x p ( i k R m - R . )  
,,, #,, R,,, - R ,  ~ m (R, , , ) .  (4 )  

To compare our formulae for the diffraction of 
scalar waves with those for X-ray diffraction (e.g. 
Litzman, 1978) we must put 

Qo = - k2 ~oXo/ 4"n', (5) 

where Qo=Q/(1- ikQ)  [cf (12b)], Xo is 4zr times 
the Fourier component of the susceptibility of the 
crystal, and g2o=(alxaz).a3 is the primitive cell 
volume. 

The solution of the system of equations (4) can be 
written as [(I.28)] 

~pn'n2n3(R,,)=exp [ikll(nlal + n2a2)] ~ cj exp (ina@j) 
J 

= Z cj exp (iKjR,), (6) 
J 

where 

KJ = kll + (1 / 27r) (qJj - klla3)g 3 . (7) 

Evaluating ~"(R,)  from (4) and inserting the results 
into (3) we get for the wave function qtr(r) of the 
reflected particles [(I.29)] 

1 

~r( r )  =~--"po Kpqz(k) RT(G-q) 

x exp (iOpq) exp [ iKpq(k)r] 

where, according to (I.55), 

with 

for z < 0 ,  (8) 

RT(OL)=-fk~ exp (-ika3)R,(Opq)R2(Opq) (9) 

exp ( i01)-  exp (iO-~o) 
Ra(Opq) = exp (i0,) - e x p  (iOpq)' 

Rz( O~q) = ~ exp ( id/j) -exp  ( iO-~o) 
j=2 exp (i+j) exp (i0pq) 

(10a) 

exp ( iOf ) - e x p  ( iO L) 
x (lOb) 

exp( iOf) -  exp (iOg-o) " 

Quantities ~oj appearing in (10a) and (10b) are 
solutions of the dispersion relation [(I.57)] 

('1) [ exp ( iO~q) 
1 + QS'(k")-}--'~pq bpq exp ( iq , ) -exp (iOpq) 

exp (-i0~q) ] 
~ exp ( - iq J ) - exp  (--iOpq) =0, 

( l l a )  

where S'(k II) is the two-dimensional lattice sum. 
Equation ( l l a )  can be cast in another form (1.53) 
(see Appendix) 

(") [ i sin (a3zKpqz) 
,o cos (0 - ,.~-,pq, - c o s  (a3zKpoz) 

+ clg ( iKp"z~ ] 
\ 28 ] + PQ°= 1. ( l ib)  

In ( l l a )  and ( l l b )  we have introduced 

2 zriQ o 2 7riQo 
bpq= la, xa2 K.qz' bpq=- a, xa2lK.q~ (12a) 

Qo Q - - -  
1 + ikQo' 

and (12b) 
x 

qb(x) = (2/rr 1/2) J" exp ( - t  2) dt. 
o 

The form of P can be seen when comparing ( l l b )  
and (I.53) (see Appendix). 

In a semi-infinite crystal only the roots of the dis- 
persion relation ( 11 a) and/or  ( 11 b) for which Im qJj > 
0 have a physical meaning and thus they are to be 
inserted into (10a) and (10b). 

The probability current densities in the incident 
and reflected [in the direction of Kpq(k)] waves are 
given by 

jin¢=(hk/m ) fiE, (13a) 
- 1  o o  - 2 j,.(O~q)=[hK[,q(k)/m] KpqzRr (Opq)] 

= [ hK-~q(k)/m] (kz/Kpqz)R~( O;q)R2( O;q)l 2 f]2, 

(13b) 

where Rl(O-~q) and RdO~,q) are defined by (10a) and 
(10b), respectively. The reflectivity N(0~q) in the 
direction of the vector K~q(k) is defined as 

~(Opq)=[jr(Opq)COSGq/ jinc COS ~ (14) 
where 

cos s c = kz/k, 
(15) 

cos = g q (k)/IK;o(k)l = g.qz/k 
(cf Fig. 1 - generally the vector k and K~q(k) and e3 
do not lie in the same plane). After inserting (13a) 
and (13b) into definition (14) we obtain 

~(O;o)=lR,(O;o)l = R2(O-~q) 2kz/Kpq~, (16) 

which is our final exact formula for reflection in the 
direction of K;q(k). 

3.  A p p r o x i m a t e  re f l ec t ion  curves  

Formulae (10a), (10b) and (16) for the reflection 
given in the preceding section are generally valid 
without any limitation concerning the energy, direc- 
tion of incident radiation or the strength of the inter- 
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action between the radiation and the crystal consisting 
of Fermi 3 potentials. 

The crucial point of the analysis of our general 
results is to find the character of the solutions 0s of 
the dispersion equation ( l l a )  and/or  ( l ib ) .  The 
functions on the LHS's of these equations have poles 

+ 

for ~=Opq+n27T (n integer) and we can see that 
each solution $j of the dispersion equation may be 

+ ± 
associated with one pole Opq. The distance Opq- Op% 
is the smaller, the greater is the value of the quantity 

I, , 01 I1, 0 b°q I = 2rrQo a, xa2Kpqz. (17) 

The quantity (17) has a large value if the ratio Qo/a 
is small (i.e. if the interaction between the radiation 
and the crystal is weak) and the parameter agpq z is 
not 'too small', which is fulfilled in the case when the 
wavelength of the radiation is equal in order to the 
lattice parameter and when the waves propagating 
near the surface are not included (the grazing- 
incidence region will be dealt with in § 4). In an 
absorbing crystal Im Qo < 0 holds and a simple con- 
sideration shows that the roots fulfilling the condition 

+ 
Im Oj > 0 lie near Opq. The root near 0o+o will then be 
denoted by 01. 

In what follows we will suppose that 

R2(Opq)~-I for all (p, q). (18) 

This is true, for example, if 0 j -  0~- < 1 for all j-> 2. 
Then we shall be engaged in the evaluation of Rl(Opq) 
only. R2(Opq) -- 1 means physically that from the many 
waves exp (i~jRm) in (6) only one with the wavevec- 
t o r  K I = k]l+ ( $ 1 -  klla3)g3/(2~r) [ cfi (7)] influences the 
reflectivity substantially. The wavevector K1 of this 
wave should be evaluated of course from the exact 
dispersion relation ( l l a )  and /or  ( l ib ) .  

The wavevector kB of the incident wave is said to 
satisfy the Bragg condition for reflection in the direc- 
tion of the vector K~:(k~) if 

[KTs(kB)]2= (kB + rg~ + sgz- jg3)  2 

(r, s, j integers). (19a) 

In the Appendix it is shown that the condition (19a) 
is equivalent to 

+ 
0oo(k,) = 07~(kB) + 2 rrj. (19b) 

We shall suppose that condition (19a) and /o r  (19b) 
is satisfied for one index triple (r, s, j )  only. This 
condition, together with approximation (18), is 
similar to but not so restrictive as the usual two-beam 
approximation in the conventional Laue dynamical 
theory of diffraction since qq should be evaluated 
from the exact (multiple-beam) dispersion relation 
( l l a )  and /or  ( l ib ) .  

If the wavevector k of the incident wave is in the 
neighbourhood of vector kB, then 

O-~o(k)=O~(k)+2,rrj+Tq, j integer, Inl~l. (20) 

If r /~  0 the poles 0o+o and 0L in the dispersion relation 
( l l a )  and /o r  ( l l b )  coincide and the value of R1(OL) 
defined by (10a), i.e. 

exp ( i 0 , ) - e x p  (iOoo) 
R,(07s) = (21) 

exp (i0,) - exp ('tOoo + - irl ) ' 

should be handled very carefully.* For this purpose 
we pick out in dispersion equation ( l i b )  the terms 
(p, q ) =  (0, 0), (r, s) from the sum Y.pq, so that this 
dispersion relation is rearranged in the form 

bO o exp ( iOoo) t- br ° exp (-iOa) 
exp(itp)-exp(iO-~o) exp( - iO) -exp( - iOa)  

+ ooEl  ,Ooo,  i ooz 3 
exp ( - i 0 ) - e x p  (-iOoo) + ~ \  2B ] 

+bOs [ 1 +  exp(iOr + ) (iKrsz~] 
exp( i0 )  exp(i0+s)+@ - \ 2 B /  

+ E' 
(Pq)~ 

(o,o),(r,s) 

i sin (a3zgpqz) 

b °q cos (0-ask----[plq-)-co---~ i a3~Kpqz) 

(22) 

To evaluate RI(OL) we have to find the solution 
qq of (22) near 0o+o and to insert it into the the RHS 
of (21). This procedure can be simplified by using 
the following rule: 

Let 0 fulfil the equation 

Thenf 

exp ( iO-~o) 
F( g,)- b~o 

exp ( i 0 ) -  exp (iO-~o) 

_brO exp (-i07~) --0. (23a) 
exp (-i~b)-exp (-i07~) 

exp ( i f f ) -  exp (iO-~o) firs 
exp ( i O ) - e x p  (iOn) exp ( - i t / /2 )  (flOO~rs)l/2 

= y ( o ) q : [ y 2 ( ~ b ) - l ]  1/2 (23b) 

* The considerations following equation (I.57) in our former 
paper (Litzman, 1986) are incorrect. The limit of the RHS of (21) 
for 77 + 0 should be performed as in the present paper. 

? Expressing from (23a) the term exp (iff) as a function of 
F(~)  and inserting it into the expression [exp(i~0)-  
exp(iO~o)]/[exp (i~O)-exp(iO~)] we get after simple algebraic 
manipulations the resulting equations (23b). 
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holds, where 

/3pq • o 2~-Qo 
= --lbpq = a l x a2 Kpq~' (24) 

y(  ¢ ) = exp ( it//2)(/300 +/3=) + 2F(~b) sin ( rl/2) 

2( /3oo /3 . )  ' /~ 

/3 00 3t- /3 rs 1 

=2(/3oo/3rs)i/z COS (n/2)-f  (/300/3rs),/2 

x[i /3oo/Z+i/3rJ2+F(¢)]sin(~/2)  (25) 

with 77 defined by (20). 
Taking into account (10a), (22), (23a), (23b), (24) 

and (25) we can write 

R,( O~) exp (-i'q /Z)/3r~_ y (  tfi,) ~ [ yz( d/,) _ l ]ll2, 
(/3oo/3.~),/~ - 

(26) 
where 

in the crystal. But in some approximation we can put 

H r ~ ( ~ ) -  Hr~(0o+o) or H,~(~h~)-" 1. (30a, b) 

Then Y(0~) defined by (27), needed for evaluation 
of the reflectivity (29), is expressed in approximation 
(30b) by the known quantities/300,/3,~ and 77 only. 
For 71 we have found in the Appendix that 

77 = a3z[ K,.sz(k) - Krs::(kt~) + k: - kl~z] 

= a3:k(cos ~:'- cos sc~ + cos ~:- cos soB), (31a) 

where 

cos~=kz /k ,  c ° s ( = c ° S ~ r ~ = K r ~ ( k ) / k '  (31b) 

cos ~:B=kB=/k, c o s ~ =  K,=(ks)lk.  

Thus rl can be considered to be known from the 
experimental arrangement. 

Finally let us mention that all formulae of this 
section are valid for skew reflections as well. 

with 

Hr~(O,) 

y ( ¢ , )  = floo + fl,-~ 
2(#00/3r~),/2 COS (n /2 )  

1 
-t (floofl,~),12 Hr~(¢~)sin (nl2)  (27) 

27riQo ~ ,  1 
= l -PQ°+ la ,  xa~l (,,<~)¢ K,,q: 

(o,o)(rs) 

isin(a3zKpq,) + (iKpq:  
×[cos(lisi-all3kllpq)-Cos(a3,Kpqz) + \ 2B I] 

o {  i sin (~/q - 0oo) 
-boo 2[1 - c o s  ( ¢ , -  0fro)] 

[ - t s i n ( , , - O : )  

-b°~l .2[1-cos(¢ , -O+r, )]+@\ 2B ] " 

From (26) it follows that 

(28) 

IR,(0-;=)12kz/K.z = [Y(¢,,) ::r [ y2(¢,) _ 1 ] , / 2  2 

so that for the reflectivity 9~(0~) defined by (16) we 
now get 

~(o~)--IY(O,):~[Y2(O,)-1]'/zI2[R2(O~)12, (29) 

where according to approximation (18) R2(O~)-1.  
To get the exact result for R,(O~) one needs to 

insert the solution ¢, of the dispersion relation (11 a) 
and/or  (11b) near the pole 0o+o into the expression 
for Hrs(¢l) defined in (28). In the term Hrs(¢l) the 
interaction of the wave exp (iK~R,,,) with all waves 
exp (i%Rm) with j ~ 1 is hidden since the dispersion 
relation from which ¢, should be computed takes 
into account all waves excited by the incident wave 

4. Comparison with Lane's theory 
To compare our results with those of other authors 
we wish to express ~7 given by (31a) as a function of 
the deviation zl~: = £ -  £s (see Fig. 1). To this goal we 
shall assume, as in the conventional theory of diffrac- 
tion, that all the vectors k, ks, K~(k), K~(ka) and e3 

w 

Krs { kB } 

:3 e, 

Oz 

Fig. 1. The geometry of the reflection of X-rays on a crystal, k, kB 
and K~(k), K~(ks)  are the wavevectors of the incident and of 
the reflected waves, respectively. The wavevectors of the reflected 
waves do not lie generally in the plane of incidence. Is~l, I~:'l, Is%I, 
Is%] <- 7r/2. The vectors kB and K~(kB) fulfil the Bragg reflection 
condition. 
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lie in the same plane so that we can write k~= 
k cos ( (n+A~) ,  k" = k sin ( ~ +  A~:) etc. Introducing 
the deviation A~ into our formula for small A~ we 
find after lengthy but easy algebraic manipulations 
that 

where 

r / -  
a3~k 

cos ~:~ 
- -  {A~ sin 20n -½[cos 20~ 

- (cos ~ / c o s  ~b)2](a~:Y} + O(a~) ~ (32) 

20~ = 7 r -  (~B+ ~ ) .  

To be able to make comparison of our results with 
formulae for X-ray diffraction we have further to take 
into account (5). Using it in the second-order approxi- 
mation in ag we obtain from (27) 

Y( ~s,) = {xol[Z(x~)'/2]} 
× [(cos ( / c o s  ~:),/2+ (cos Ucos ()1/2] 

- ( X ~ ) - ' / 2 H ,  s ($ , ) ( cos  ~ cos ~,),/2 

x (sin 20B/cos ~:~) A~: + ½(X~) -w2 

x [(cos s c cos ~:')'/2/cos ¢'B]{-~(a3zk)2Xo 

x [(cos ¢)-1 + (cos ¢ ' ) - ' ]  sin 2 20Mcos ~c~ 

+ H,s( ~tl)[COS 2 0 n -  (cos ~:~/cos ~:~)2]}(a~)2. 
(33) 

(i) Reflection coefficient 

Pinsker (1982) gives for the reflection coefficient 
of a semi-infinite crystal a formula* quite similar to 
our equation (29) 

g ~ = l x h l x a l  ]y + (y2_ 1)1/212 (P.8.89) 

but with 

y=(#/2C)(xhXa)-l/2(3'O/l'yhl)W2 (P.8.76) 

# = 2a  - Xo(1 - Yh/YO), (P.3.9) 

a = AO sin 20, (P.3.6) 

C = I  or [cos 201 . (P.2.74) 

Pinsker's AO and O correspond to our A~: and 0n, 
respectively. 

In our case of point scatterers we have to put C = 1 
and Xo = Xh for all h, and then we finally obtain from 
(P.8.76) (in Pinsker's notation) 

Y = - 2 ( X 2 )  '/2 + \  Yo / 

+ ~  Yo AO s in20.  (34) 

* Formulae quoted from Pinsker (1982) will be referred to as P, 
followed by the relevant equation number. We conserve their 
original notation. 

Putting in (33) Hrs(qg) = 1 and as usual cos s c=  
cos ~n, cos ~ '=  cos sc~ and neglecting terms of order 
(A~:) 2 we can see that the RHS's of (33) and (34) 
differ in sign only, which is unimportant for the 
reflectivity given by (P.8.89) and by our equation (29). 

Terms of higher order in A~ in the expression for 
the reflectivity were discussed in connection with 
X-ray diffraction at Bragg angles near 7r/2 when the 
term A~ sin 20B in (33) is comparable with the term 
of the order (A~:) 2. Brfimmer, H6che & Nieber (1979) 
keep the validity of equation (P.8.89) [which agrees 
with our general result (29)] but improve some 
approximations used in the conventional theory by 
deducing (P.3.6) for a. They suggest for a the 
expression [see equation (12) of Briimmer et al. 
(1979)] 

a = [1 +2(0B -- 0) 2 sin 2 0B +2(0~ -- 0) sin 20hi 1/2- 1 

- ( 0 ~ -  0)2 sin 2 0B+(0B-- 0) sin 20B, (Brii.12) 

where 0 is the glancing angle, so that 0 n -  0 = A~:. 
For Bragg angles near 7r/2 the term in (33) contain- 

ing sin 2 20B can be neglected. Further we express the 
coefficient of (A~:) 2 in (33) in the form 

cos 20B - (cos ~B/cos ~:~)2 

= - 2  sin 2 0n - (2 sin 20Mcos 2 ~ )  

x cos [(~:~- ¢~)/2] sin [ ( ¢ ~ -  ¢B)/2]. (35) 

For 0n = I7-/2 the angles ¢B, ¢b are very small and 
thus the second term on the RHS of (35) can be 
omitted. When we put Hrs(O,)= 1 we finally obtain 
from (33) 

Y ( ds, ) = ½Xo(X~) -1/2 

X [ (COS ~'/COS ~:7)1/2 + (COS ~/COS ~7')1/2] 

- (x~,)-'/2[(cos ~ cos ~:')V2/cos ¢~] 

x [(sin 20B)A¢+sin 2 0B(A¢)2], (36) 

which is in agreement with the correction of Brfimmer 
et al. (Brii.12). 

Caticha & Caticha-Ellis (1982) follow a similar 
procedure to that of Briimmer, H6che & Nieber 
(1979). However, they do not give any analytical 
expressions which could be directly compared with 
our results. The paper of Hashizume & Nakahata 
(1988) agrees with our results and those of Brfimmer 
et al. 

(ii) Dispersion relation and accommodat ion 

The fundamental task of the dynamical theory of 
diffraction is the evaluation of the parameters of the 
waves excited in the crystal by the incident radiation. 
For a comparison of our procedure with Laue's theory 
we shall follow the exposition given by Zachariasen 
(1946). Zachariasen gives for the wavevector of the 
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wave within the crystal medium the formula* 

13o = k~ + (ko6o/yo)n (Z.3.90) 

= k~ll+ (,~ -~ cos ~:+ h -~ 6o/COS ~:)n. (37) 

The vector I~o corresponds to our ~1 defined by (7): 

27r1~o = ~1 = kll + ( 2 7 r ) - l ( ~ b l  --  k l l a 3 ) g 3  . (7a) 

Comparing (37) and (7a) we obtain the connection 
between the accommodation 6o introduced in Laue's 
theory and our quantity @1: 

~01- 0o+o = a3zk 30/cos ~; (38a) 

then 
@~- 0L = @~- ( 0o+o - 77 -- 2 rrj) 

= a3zk 6o/COS ~:+ r/+ 2rrj (38b) 

also holds. 
The accommodation 3o satisfies (if Xh =go) the 

dispersion equation 

( 2 6 o - X o ) [ ( 2 / b ) 6 o - X o + a ] = x g  , (Z.3.119) 

a = 2(0B-  0) sin 20B, (Z.3.116) 

where 0 and 0B are again the glancing angles. In the 
notation used in the preceding section and in 
(Z.3.116), equation (Z.3.119) reads 

6 g -  (cos ~B/cos ~b)½[Z(0B- 0) sin 20B 

- X o ( 1 - c o s  ~ / c o s  ~:B) ]60  

+Xo(COS~B/cos~b)[(Os-O)/2]sin2OB=O. (39) 

On the other hand, inserting (7a), (38a) and (38b) 
into our exact dispersion equation (23a) we get for 
6o the equation 

F(Oo+o + a3zk 6o/COS ~) 

-b°o[exp ( ia3zk6o/COS ~ ) -  1 ]-1 

-b°s/{exp [ - i (  a3~k6o/ COS ~+ ~/)]-  1} -1 =0.  (40) 

In the approx|mation 

F(~, )  = 1, e x p ( i x ) - l = i x  (41a) 

and [see (32)] 

7"1 = -(a3zk/cos  ~'B) sin 20B A~, (41b) 

we finally obtain from (40) [through (5)] 

6g+l cos~: -Xo 1 
2 cos ¢' cos ~x 

cos ~ '7_ cos ¢ a e  
- -2A¢s in2OBc~s~bJ6°+X°cos (B  2 sin 2 0B ---- 0. 

(42) 

* Formulae quoted from Zachariasen (1946) will be referred to 
as Z, followed by the relevant equation number. We conserve their 
original notation. 

As A~: = ~:- ~n = 0~ - 0, then neglecting the difference 
between cos ~: and cos ~:B and/or  between cos ~:' and 
cos ~:h we can see that (42) agrees with (39) following 
from the conventional theory. From the foregoing 
considerations we can see how the 'conventional'  
dispersion equation (Z.3.119) and/or  (39) is found 
from the 'exact' one (40). In the extended dynamical 
theory of diffraction one replaces the approximate 
dispersion equation of the second order (Z.3.119) by 
a more general one (e.g. Bedynska, 1974; Brfimmer, 
HSche & Nieber, 1979; Kishino & Kohra 1971) 

Kg Xo k, K~, Xo =X~, (43) 

where Kh=Ko+h=2"rr l~o+h,  which leads to an 
equation of the fourth order for 60. It is not quite 
clear what the connection between the approximate 
equation (43) and our exact one (40) is. 

(iii) Grazing reflection 

The wavevector of the specularly reflected wave is, 
in our notation, (kx, ky,-kz)  = Koo and, as for the 
intensity of the reflected beam, we need to evaluate, 
following (10a), the term 

Rl(0oo) = exp (iqsl) - e x p  (iOoo) 
exp (iqJl)-exp (iOoo) 

(44) 

where as before ~1 is the solution of the dispersion 
relation ( l l a ) .  If ~bl = 00+0 (this is true for X-ray and 
neutron diffraction) the specular reflectivity ~(0oo), 
given by [cf. (16) and (18)] 

~(0oo) = IR,(Ooo) 2 (45) 

is very small except for the case when 

0oo = 0o+o, 
i.e. 

a3k II- a3zk z --- a3kll + a3zkz, 
i.e. 

a3zkz "" 0, (46) 

which is true in the grazing-incidence region. Thus 
the grazing-incidence specular reflection is from our 
point of view a special case of the Bragg reflection 
in which the poles 0oo and 0o+o of the dispersion 
equation (11 a) nearly coincide. Then we can use the 
method expained in subsection (i) by putting [see 
(20)] 

r /= 0~-o(k) - 0oo(k) = 2a3zkz = 2a3zk cos ~:. (47) 

The dispersion relation (11a) should now be 
rearranged in the form [cf. (23a)] 

exp (iOoo) 
ffr(~b) -b°o  exp (i~b)_exp (iOo+o) 

exp (-iOoo)_ .1 
+exp ( - i ~ ) - e x p  (-iOoo)_! 

(48) 
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Again using rule (23b) for (r, s )=  (0, 0) we obtain 

exp ( iqq) -exp  ( iOo+o) floo 
exp ( i $ , ) - e x p  (iOoo) exp (-i7//2) (fl~o)l/2 

= Y($,) :~ [ Y2(~0~)- 1] 1/2, (49) 

where in the approximation (30b) Y($l) reads 

Qo ( ~ o  1 Qo ) 
Y(ip,) = -(Qg),/-----------~-I- 2zr(Qg),/2+~ a ~ z ~ (  

X k 2 cos 2 ~:+ 0('1~4). (50) 

Since for neutron diffraction the parameter Qo/a 
is very small we can write 

Qo Oo k2 Y ( 0 1 ) -  (Qg) ~2~(Qg),/2 cos 2 ~. (51) 

Introducing (51) into (49) we get for the grazing- 
incidence reflectivity ~ (0oo) defined by (45) the same 
formula as given by Sears (1978). But let us emphasize 
that the approaches used by Sears and by us are quite 
different. 

5. Concluding remarks 

Methods for making more precise some formulae 
of the 'conventional' dynamical theory of diffraction 
from the point of view of the 'extended' theory has 
been discussed in many papers in the framework of 
Laue's method. In the present paper we have tried to 
build up an extended dynamical theory of diffraction 
using Ewald's fundamental ideas. 

The starting points of our procedure were the exact 
formulae (9), (10a), (10b), ( l l a )  and ( l i b )  for the 
reflection on a semi-infinite crystal consisting of Fermi 
6 potentials, which are valid even in the case of a 
skew reflection. For the reflectivity ~(Opq) we have 
deduced formula (29) which in approximation 
Ra(Opq) = 1 coincides formally with the well known 
expression (P.8.89) of Laue's conventional theory. 
But the meaning of parameter Y(~0i) given by (27) 
and/or (33) and of parameter y defined in (P.8.76) 
is different. We shall show in a future paper that the 
formal similarity between formulae of the conven- 
tional and extended theory of Ewald is valid in the 
more general case of a slab of finite thickness as well. 

Since we deal from the very beginning with the 
semi-infinite crystal bordered by a surface it turns out 
that a good parameter of our theory (especially at 
skew reflection) is not the deviation A~ from the Bragg 
reflection position but the parameter -q defined by 
(20) and/or  (31). 

A comparison of our results with those following 
from the conventional and extended Laue theory of 
diffraction has been drawn in § 4: (i) The former 
suggested extension of Laue's theory for Bragg angles 
near I7-/2 (Brfimmer, H6che & Nieber, 1979) has been 

confirmed as a special case of the general formula 
(29). (ii) The exact dispersion relation (1 l a) and/or  
( l l b )  yields the conventional one (Z.3.119) and/or  
(39) by adopting approximations (41a) and (41b). 
(iii) The total reflection at grazing incidence is from 
our point of view formally equivalent to Bragg reflec- 
tion when 0~-o(k)= 0oo(k) [see (46)]. 

The extreme asymmetric diffraction in the Bragg 
case of grazing incidence (Rustichelli, 1975; Briim- 
mer, H/Sche & Nieber, 1976) means that 0~-o(k)~- 
0o0(k) -~ 0~(k)+ 27rn, i.e. three poles of the dispersion 
equation (11a) and/or  (11b) coincide. We have not 
discussed this case in the present paper. 

The great drawback of the Ewald procedure is that 
the crystal is supposed to be built up of point scat- 
terers. Thus it is difficult to take into account the 
atomic factors and the theory is more appropriate for 
neutron than for X-ray diffraction. Secondly, in the 
present paper the case of a simple lattice without a 
basis has been dealt with. The theory can, however, 
be extended to the case of a general crystal lattice 
with a basis (Litzman, 1986), but the resulting for- 
mulae are more complicated than those used in our 
present paper. Nevertheless, we think that the for- 
mulae deduced here can be used to test different 
approximations adopted in the extended dynamical 
theory of diffraction. 

APPENDIX 

I. Bragg reflection condition 

Each vector K~(k) defined by (2b) can be expresed 
in two coordinate systems, viz (b~,b2,e3) or 
(gl, g2, g3): 

K~(k) = k II + rb~ + sb2 - e3 Krsz (k) 

= k +  y~gm + y2g2 + y3g3 

= kll+ Ylgl + YEg~ + k ± + Ylgi L + Y2g~- + Y3g~-. 

As b~ -- g~, b2 = g~ hold we get y~ = r, Y2 = s, and thus 

K~(k) = k II + rbl + sb2 - esKrsz (k) 

= k+  rgl + sg2 + Y3g3. (A1) 

Multiplying the last equation by a3 we obtain [cf. (2e)] 

0~(k) = 800(k) + 27ry3(k), 

so that (A1) may be read as 

0~(k) - 000(k) 
Kr~(k) = k +  rg~ + sg2-¢ g3. (A2) 

27r 

The vector kB satisfies the Brags reflection condition 
if 

(ks + rg~ + sg2-  ng3) 2 = k 2 (r, s, n integers) 

holds. Since K~(k)2= k 2 must always hold [see 
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(2d)], it can be seen from (A2) that the Bragg reflec- 
tion condition for the vector KTs(k~) reads 

0~-0(ks) = 0~(ks) + 27rn. (A3) 

2. ~ parameter 

We have introduced 77 in (20)" 

~7=0~o(k) -0~(k) -n27r .  (A4) 

Let kB be a vector in the Bragg reflection position, i.e. 

K ~ ( k a ) = k s + r g ~ + s g 2 - n g 3 ,  (A5a) 

0"~o(ks)= 0~(ks )+  27rn. (A5b) 

Let k be a vector in the neighbourhood of the vector 
ks. Then using (A4), (A5b) and (2e) we obtain 

~7 = 0~o(k)- 0 ~ ( k ) -  27rn 

= 0~-o(k)- 0 ~ ( k ) - [  0~-o(ks)- 0~(ks)]  

= a 3 k -  a3K ~(k) - [a3ka -- a3K ~(kB) ] 

= a3z[ Krsz (k) - Krsz(ka) + k~ - kin], (A6) 

so that the 77 parameter is a function of the known 
vectors ks and k. 

3. Correction of a misprint in equation (1.53) 

There is a misprint in equation (I.53); the term 

_ l___~,(igpqz~ 

Kpqz \ 2B / 

should be replaced by 

oz . 
Kpqz \ 2B ] 

4. P parameter appearing in equation ( l ib )  

When comparing ( l l b )  and (I.53) we obtain 

P = i k ~ ( i k / 2 B )  + (2/7r 1/2) B exp ( k2/4B 2) 

_ ~ ,  exp [ ikll(nlal + n2a2)] 

(nln2) 2 nlal + n2a2 
(oo) 

x {exp (--iklnlal + n2a2 ) 

x [1 - q~(Inla, + n2a2 B - ik/2B)] + c.c.}. (A7) 
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Abstract 

The Coulomb potential in a crystal is discussed. It is 
shown that its Fourier series expansion has a singular- 
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ity for the V(0, 0, 0) component, which is important 
when comparing different compounds, or when using 
the Coulomb potential as a probe for reactivity. 
Methods to calculate this term are discussed. Sum 
rules for multipolar moments of crystals in terms of 
structure factors are derived, which are of interest for 
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